The change in Primitive variables are calculated as follows:
\Delta \rho = \rho - \rho_{t} ; \Delta \bar{V} = (\bar{V} - \bar{V}_{t})*\rho_{t} ; \Delta P = \dfrac{P - P_{t}}{\gamma - 1}
Thus, only one of \Delta PV or PV_t needs to be prescribed.
- 0: Pressure and Density sponge to infinity values
- \rho_t = \rho_{\infty}
\Delta \bar{V} = 0
P_t = P_{\infty}
- 1: Pressure and Density sponge
- \Delta \rho = \rho \dfrac{\Delta P}{P}
\Delta \bar{V} = 0
P_t = P_{\infty}
- 3: Pressure Velocity and Density sponge
- \rho_t = \rho_{\infty} * f_{\rho} , where f_{\rho} is the targetDensityFactor
P_t = P_{\infty}
- 5: Channel Flow
- 6: Pressure and Density sponge to infinity values
- \rho_t = \rho_{\infty}
\Delta \bar{V} = 0
P_t = P_{\infty}
- 77: Sponge layer for STG forcing
- 41: FAN -> Alexej Pogorelov
- 47: Hardcoded
- Warning
- The coordinate values are hardcoded in the implementation. Please see the code for detailed implementation.
- 446: Pressure sponge
- \Delta \rho = 0
\Delta \bar{V} = 0
\Delta P = \rho E - \dfrac{P_\infty}{\gamma-1}+\dfrac{1}{2} \rho {||\bar{V}||}^2
- 11212: Pressure sponge to infinity
- \Delta \rho = 0
\Delta \bar{V} = 0
P_t = P_{\infty}
- 11213: Flame
- 11214: Flame
- 51: General Sponge with Average
- 100: Jet
- 333: Velocity sponge to infinity
- \Delta \rho = 0
\bar{V}_t = \bar{V}_{\infty}
\Delta P = 0
- 2014: Pressure Velocity and Density sponge to infinity
- \rho_t = \rho_{\infty}
\bar{V}_t = \bar{V}_{\infty}
P_t = P_{\infty}
- 91900: Flame
- 919001: Flame Hardcoded
- Warning
- The coordinate values are hardcoded in the implementation. Please see the code for detailed implementation.
- 919002: Flame Hardcoded
- Warning
- The coordinate values are hardcoded in the implementation. Please see the code for detailed implementation.
- 40: Pressure and Density sponge
- \rho_t = \rho_{\infty} * f_{\rho} , where f_{\rho} is the targetDensityFactor
\Delta \bar{V} = 0
\Delta P = P_\infty + \Delta P_\tau (\text{DomainBndry[3]} - y_{cell})
- 1174: Sponge for jet exiting (chevron) nozzle
- 2: vortex-pair cylinder (quiescent flow prescribed)
- \rho_t = \rho \dfrac{\Delta P}{P}
\Delta \bar{V} = \bar{V}*\rho_t
P_t = P_{\infty}
- 4: quiescent flow- Pressure and Density Sponged
- \rho_t = 1.0
\Delta \bar{V} = 0
P_t = P_{\infty}
- 7: shock
- 1930: backward-facing step combustor
- 17511: forced response
- 1990: DL instability
- 17512: ...
- 17514: DL instability
- 17515: forced response velocity profile- forcing via sponge layer