Loading [MathJax]/extensions/TeX/newcommand.js
MAIA bb96820c
Multiphysics at AIA
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Pages
Structured finite volume (FVSTRCTRD)

Transformation to curvilinear coordinates

The transformation of the governing equations (NSE) to curvlinear coordinates

\begin{align} \tau = t, \qquad \xi = \xi(x,y,z,t), \qquad \eta = \eta(x,y,z,t), \qquad \zeta = \zeta(x,y,z,t) \end{align}

yields the following transformed Navier-Stokes equations in conservative form

\begin{align} \newcommand{\ddelt } [1] {\frac{\partial #1}{\partial t}} \newcommand{\ddelxi } [1] {\frac{\partial #1}{\partial \xi}} \newcommand{\ddeleta } [1] {\frac{\partial #1}{\partial \eta}} \newcommand{\ddelzeta } [1] {\frac{\partial #1}{\partial \zeta}} \ddelt{\mv{\hat{Q}}} + \ddelxi{\mv{\hat{E}}} + \ddeleta{\mv{\hat{F}}} + \ddelzeta{\mv{\hat{G}}} = 0 \end{align}

where

\begin{align} \mv{\hat{Q}} = J\mv{Q} \end{align}

and

\begin{align} \mv{\hat{E}} &= J\left(\xi_t\mv{Q} + \xi_x\mv{E} + \xi_y\mv{F} + \xi_z\mv{G}\right)\\ \mv{\hat{F}} &= J\left(\eta_t\mv{Q} + \eta_x\mv{E} + \eta_y\mv{F} + \eta_z\mv{G}\right)\\ \mv{\hat{G}} &= J\left(\zeta_t\mv{Q} + \zeta_x\mv{E} + \zeta_y\mv{F} + \zeta_z\mv{G}\right) \end{align}

The quantities \xi_i, \eta_i\, and \zeta_i denote metric terms and J denotes the Jacobian.

To compute the transformed fluxes \mv{\hat{E}}, \mv{\hat{F}}, and \mv{\hat{G}} with second-order accuracy central differences around the cell center are computed via

\begin{align} \left.\frac{\partial \mv{\hat{E}}}{\partial \xi}\right|_{i,j,k} &= \mv{\hat{E}}_{i+\frac{1}{2},j,k} - \mv{\hat{E}}_{i-\frac{1}{2},j,k}\\ \left.\frac{\partial \mv{\hat{F}}}{\partial \eta}\right|_{i,j,k} &= \mv{\hat{F}}_{i,j+\frac{1}{2},k} - \mv{\hat{F}}_{i,j-\frac{1}{2},k}\\ \left.\frac{\partial \mv{\hat{G}}}{\partial \zeta}\right|_{i,j,k} &= \mv{\hat{G}}_{i,j,k+\frac{1}{2}} - \mv{\hat{G}}_{i,j,k-\frac{1}{2}}\,. \end{align}

Convective flux discretization

The convective flux is computed with the Advection Upstream Splitting Method (AUSM) by [LiouSteffen1993]. In this method the inviscid flux is split into a convective part, computed by an upwind formulation, and a pressure part, computed by central differences. The inviscid flux at a cell interface, i.e., the surface that connects two cell volumes, by

\begin{align} \newcommand{\vecfive } [5] {\begin{pmatrix} #1\\ #2\\ #3\\ #4\\ #5 \end{pmatrix}} \mv{\hat{E}}_{inv} = J\Big[ \vecfive{\rho U}{\rho Uu}{\rho Uv}{\rho Uw}{\rho U(E + p/\rho)} + \vecfive{0}{p\xi_x}{p\xi_y}{p\xi_z}{p\xi_t}\Big] \end{align}

where the contravariant velocity is given by

\begin{align} U = u\xi_x + v\xi_y + w\xi_z + \xi_{t}\,. \end{align}

The introduction of the speed of sound a yields

\begin{align} \newcommand{\vecfive } [5] {\begin{pmatrix} #1\\ #2\\ #3\\ #4\\ #5 \end{pmatrix}} \mv{\hat{E}}_{L/R} = \underbrace{ \frac{U}{\left|\nabla \xi \right|a} }_{M_{L/R}} \underbrace{ J\left|\nabla \xi\right| \vecfive{\rho a}{\rho au}{\rho av}{\rho aw}{\rho a\left(E + p/\rho\right)} }_{\mv{\hat{E}}^c_{L/R}} + \underbrace{ J\vecfive{0}{p\xi_x}{p\xi_y}{p\xi_z}{p\xi_t} }_{\mv{\hat{E}}^p_{L/R}} \end{align}

where L and R denote the left and right state of the surface. That is, the left or right state the interface Mach number

\begin{align} M_{L/R} = \frac{1}{2}\left[M_L + M_R\right] \end{align}

where

\begin{align} M_{L,R} = \frac{U_{L,R}}{\left|\nabla \xi \right|a_{L,R}} \end{align}

and

\begin{align} a_{L,R} = \sqrt{\gamma\frac{p_{L,R}}{\rho_{L,R}}} \end{align}

Whether the left or right state is chosen for convection depends on the Mach number, i.e.,

\begin{align} \mv{\hat{E}}^c_{L/R} = \left\{ \begin{array}{ll} (.)_L, &M_{L/R} \geq 0\\ (.)_R, &M_{L/R} < 0 \end{array} \right.\,. \end{align}

As an example, the total discretized inviscid flux in the \xi-direction is computed by

\begin{align} \mv{\hat{E}}_{L/R} = \frac{1}{2}\left[M_{L/R}\left(\mv{\hat{E}}^c_L + \mv{\hat{E}}^c_R\right) + |M_{L/R}| \left(\mv{\hat{E}}^c_L - \mv{\hat{E}}^c_R\right)\right] + \mv{\hat{E}}^p_{L/R} \end{align}

where

\begin{align} \mv{\hat{E}}^p_{L/R} = \frac{1}{2}\left[p_L + p_R\right]J\vecfive{0}{\xi_x}{\xi_y}{\xi_z}{\xi_t}\,. \end{align}

is the pressure part of the flux. To achieve a second-order accuracy the left and right states are computed by a monotonic upstream-centered scheme for conservation laws (MUSCL) [vanLeer1979], such that

\begin{align} \newcommand{\im } [0] {{i - \frac{1}{2}}} \newcommand{\ip } [0] {{i + \frac{1}{2}}} \left.\mv{P}_L\right|_{i+\frac{1}{2}} &= \mv{P}_i + \frac{l_\ip}{\left(l_\ip + l_\im\right)^2} \left[l_\im \left(\mv{P}_{i+1} -\mv{P}_{i}\right) + l_\ip\left(\mv{P}_{i} -\mv{P}_{i-1} \right)\right]\\ \left.\mv{P}_R\right|_{i+\frac{1}{2}} &= \mv{P}_{i-1} - \frac{l_\ip}{\left(l_\ip + l_{i+\frac{3}{2}}\right)^2} \left[l_\ip \Delta_{i+\frac{3}{2}} \left(\mv{P}_{i+2} - \mv{P}_{i+1}\right) + l_{i+\frac{3}{2}}\left(\mv{P}_{i+1} - \mv{P}_{i}\right)\right] \end{align}

where

\begin{align} l_{i\pm\frac{1}{2}} = \sqrt{\left(\pm\mv{x}_{i\pm 1} \mp \mv{x}_{i}\right)\cdot\left(\pm\mv{x}_{i\pm 1} \mp \mv{x}_{i}\right)} \end{align}

is the distance function between the cell centers of neighbour cells in the chosen direction.

Viscous flux discretization

The viscous flux is computed by a modified cell-vertex (MCV) scheme [Meinke1993], where the flux through each interface, e.g., \left(i+\frac{1}{2},j,k\right) and \left(i-\frac{1}{2},j,k\right) is determined by an average of the flux on the four cell interface corner points. For instance, for the \mv{E}-flux

\begin{align} \left.\frac{\partial\mv{\hat{E}}_{vis}}{\partial \xi}\right|_{i,j,k} = &\frac{1}{4}\left( \mv{\hat{E}}_{vis,i+\frac{1}{2},j+\frac{1}{2},k+\frac{1}{2}} + \mv{\hat{E}}_{vis,i+\frac{1}{2},j-\frac{1}{2},k+\frac{1}{2}} + \mv{\hat{E}}_{vis,i+\frac{1}{2},j+\frac{1}{2},k-\frac{1}{2}} + \mv{\hat{E}}_{vis,i+\frac{1}{2},j-\frac{1}{2},k-\frac{1}{2}} \right)\\ - &\frac{1}{4}\left( \mv{\hat{E}}_{vis,i-\frac{1}{2},j+\frac{1}{2},k+\frac{1}{2}} + \mv{\hat{E}}_{vis,i-\frac{1}{2},j-\frac{1}{2},k+\frac{1}{2}} + \mv{\hat{E}}_{vis,i-\frac{1}{2},j+\frac{1}{2},k-\frac{1}{2}} + \mv{\hat{E}}_{vis,i-\frac{1}{2},j-\frac{1}{2},k-\frac{1}{2}} \right) \end{align}

The corner fluxes are computed by central differences using the variables on the surrounding eight cell centers, e.g., for \frac{\partial u}{\partial \xi} at the corner point \left(i+\frac{1}{2},j+\frac{1}{2},k+\frac{1}{2}\right)

\begin{align} \left.u_{\xi}\right|_{i+\frac{1}{2},j+\frac{1}{2},k+\frac{1}{2}} =&\frac{1}{4}\left(u_{i+1,j,k} + u_{i+1,j+1,k} + u_{i+1,j,k+1} + u_{i+1,j+1,k+1} \right) -\\ &\frac{1}{4}\left(u_{i,j,k} + u_{i,j+1,k} + u_{i,j,k+1} + u_{i,j+1,k+1}\right)\,. \end{align}

Temporal integration

Combining the discretized spatial derivatives into the discrete right-hand-side operator RHS\left(t;\cdot \right) the semi-discrete equation

\begin{align} \frac{\partial \mv{\hat{Q}}}{\partial t} = RHS\left(t;\mv{\hat{Q}}\right) \end{align}

is then integrated in time by a Runge-Kutta scheme, such that

\begin{align} \begin{array}{ccl} \mv{\hat{Q}}^{(0)} &=& \mv{\hat{Q}}^n\\ &\vdots& \\ \mv{\hat{Q}}^{(k)} &=& \mv{\hat{Q}}^{(0)} + \alpha_k\Delta t RHS\left(t^n + \alpha_{k-1}\Delta t; \mv{\hat{Q}}^{(k-1)}\right)\quad k = 1,\dots ,s\,,\\ &\vdots& \\ \mv{\hat{Q}}^{n+1} &=& \mv{\hat{Q}}^{(k)} \end{array} \end{align}

In most computations the coefficients are set to \alpha_k = (1/4, 1/6, 3/8, 1/2, 1) such that a second-order accurarcy in time is achieved.

References

  • M.-S. Liou, C. Steffen, A new flux splitting scheme, J. Comput. Phys. 107 (1993) 23–39. 10.1016/j.compfluid.2014.07.004
  • B. van Leer, Towards the ultimate conservative difference scheme. V. A second- order sequel to Godunov’s method, J. Comput. Phys. 32 (1979) 101–136. 10.1016/0021-9991(79)90145-1
  • M. Meinke, Numerische Lösung der Navier-Stokes-Gleichungen für instationäre Strö- mungen mit Hilfe der Mehrgittermethode, Ph.D. thesis, Institute of Aerodynamics, RWTH Aachen University, 1993