DG_SYSEQN_ACOUSTICPERTURB
List of all available sourceTerm
in DgSysEqnAcousticPerturb<nDim>::calcSource():
- 0: no source term
- 1: APE-1
- 2: APE-2
- 3: APE-3
- 4: APE-4
- 5: Convergence test
- For this convergence test, these source terms are implemented: \(
u, v, w = A \omega \cos[\omega (-a t + x1 + x2 + x3)] *
(-a + 2 c + \mta{u1} + \mta{u2} + \mta{u3} +
2 A \sin[\omega (-a t + x1 + x2 + x3)])
\) \(
p = A \omega \cos[\omega (-a t + x1 + x2 + x3)] *
(3 + 2 c (-a + \mta{u1} + \mta{u2} + \mta{u3}) +
2 A (-a + \mta{u1} + \mta{u2} + \mta{u3}) *
\sin[\omega (-a t + x1 + x2 + x3)])
\)
- 6: Artificial source (same as in the APE4Solver)
- periodically oscillating Gaussian-shaped source of the form \(p = A \exp(-((x-x0)^2+(y-y0)^2+(z-z0)^2)/(2*r^2)) \sin(2*pi*f*t)\)
- 60: Artificial source (same as in the APE4Solver)
- periodically oscillating Gaussian-shaped source of the form \(p = A \exp(-((x-x0)^2+(y-y0)^2+(z-z0)^2)/(2*r^2)) \sin(2*pi*f*t)\)
- 7: Dipole
- Dipole source created by two monopole sources of equal strength and opposite phase and separated by a small distance (monopole sources are similar to case #6) Ref: Russell, Titlow, Bemmen: "Acoustic monopoles, dipoles and quadrupoles: An experiment
revisited", 1998.
- 800: Spinning vortices - Ewert source terms (2D only)
- This implements the qm equation on page 388 in:
Ewert, Schroeder: Acoustic perturbation equations based on flow decomposition via source filtering, 2003.